

New Energy Ecosystem

Ville Erkkilä

General status of battery storages globally

2016:

- 50 % growth of new storage, mostly batteries
- Utility-scale energy storage grew to over 500 MW
- 90 % of installed capacity Li-ion
- I GW of new capacity was announced
- To keep up with the climate targets, 21 GW needed by 2025
- Energy storage Li-ion \$20 billion/year market by 2040
 - Small-scale energy storages in homes and offices with PV will account for 57 % of installed capacity by 2040

- Upstream: raw materials
 - Critical materials for Li-ion batteries
 - Cobalt, natural graphite, silicon metal
 - China is dominating global production of natural graphite and silicon metal, increasing control of cobalt production

Raw materials	Main global producers (average 2010- 2014)	Main importers to the EU (average 2010-2014)	Sources of EU supply (average 2010-2014)	Import reliance rate	Substitution index	End-of-life recycling input rate
Cobalt	Democratic Republic of Congo (64 %) China (5 %) Canada (5 %)	Russia (91 %) Democratic Republic of Congo (7 %)	Finland (66 %) Russia (31 %)	32 %	1.0/1.0	0 %
Natural graphite	China (69 %) India (12 %) Brazil (8 %)	China (63 %) Brazil (13 %) Norway (7 %)	China (63 %) Brazil (13 %) Norway (7 %) EU (<1 %)	99 %	0.95/0.97	3 %
Silicon metal	China (61 %) Brazil (9 %) Norway (7 %) United States (6 %) France (5 %)	Norway (35 %) Brazil (18 %) China (18 %)	Norway (23 %) France (19 %) Brazil (12 %) China (12 %) Spain (9 %) Germany (5 %)	64 %	0.99/0.99	0 %

- Upstream: raw materials
 - Cobalt: market forecast until 2020 indicates a small surplus
 - Natural graphite: large surplus in 2020 (over 10%)
 - Silicon metal: market balance in 2020
 - Lithium: 75 000 tonnes 2016; 600 000 tonnes 2025

- Midstream: components
 - 2015: most of Li-ion materials manufactured in Asia
 - 85 % of cathode materials
 - 97 % of anode materials
 - 84 % separators
 - 64 % electrolytes

- Midstream: components
 - 2016: 80 GWh of Li-ion cells manufactured
 - 88 % of the manufacturing in China, Japan, and Korea
 - Production capacity growth:
 - 2015: 70 GWh
 - 2016: 150 GWh
 - 2020: 260 GWh
 - 2025: 550 GWh
 - Global demand is expected to exceed capacity in 2022-2023

- Midstream: components
 - 26 planned gigafactories totalling 344.5 GWh
 - China 49 %, 169 GWh
 - EU 23 %, 78.5 GWh
 - US 15 %, 53 GWh
 - Thailand, 50 GWh by 2020
 - Australia, 16 GWh
 - India, no specifications

Midstream: components

- Midstream: components
 - Ongoing and announced production plans:
 - LG Chem, 2 GWh by 2018
 - Samsung SDI, 2.5 GWh by 2018
 - Northvolt, 32 GWh by 2024
 - TerraE, 34 GWh by 2028
 - SERI, 200 MWh by 2018
 - SK Innovation
 - Tesla
 - Monbat

Historical development of the global battery demand and future scenarios (1950-2050)

Historical development of the global battery demand and future scenarios (1950-2050)

Global demand vs. production capacities for LIB cells 2010-2030

Source: Thielmann et al. 2017: Energy Storage Roadmap (update 2017) - Highenergy batteries 2030+ and prospects for future battery technologies, Fraunhofer ISI 2017.

03/01/2019

Li-based high-energy automotive battery roadmap towards HE-NMC based LIB

Development of LIB cells costs by cell format

Development of gravimetric energy density for LIB cells by cell format

Development of volumetric energy density for LIB cells by cell format

Development of gravimetric energy density for LIB modules by cell format

Development of volumetric energy density for LIB modules by cell format

Global LIB demand and future potential demand by applications and segments (GWh)

Global LIB demand and future potential demand by applications and segments (GWh)

Li-ion battery technology R&D landscape

More patents than scientific publications

Upscaling of "breakthrough technologies"

- 1 GWh production/year: 1-3 B€ investment
- 2-3 years from decision to turn key (experienced and established producer) / 3-4 years for new players
- New materials for breakthrough technologies: add minimum another year for scale up
- Adoption of automotive OEMs: new technology must prove itself in non-automotive applications - > minimum 4 years to series production
- -> 8+ years from prototype cells into car

Technology development

Source: Julich AABC

kt 1200 943 956 1000 800 618 545 530 600 400 305 231 211 202 211 150 200 102 83.5 83 55 58 0 Demand 2016 Supply 2016 Demand 2026 Supply 2026 Demand 2016 Demand 2026 Supply 2026 Demand 2016 Demand 2026 Supply 2026 Demand 2016 Supply 2016 Demand 2026 Supply 2026 Supply 2016 Supply 2016 Lithium (LCE) battery Graphite Nickel sulphate Cobalt grade

Demand for batteries by commodity

Metal needs for batteries will increase

Cobalt

Lithium

Nickel market supply chain - today

Source : Roskill, Wood Mackenzie, WBMS, BRN

Nickel market supply chain - 2025

03/01/2019

Nickel market supply chain - 2030

Nickel market supply chain - 2030

03/01/2019

Downstream processing adds value

Source: Neometals

Value chains

Li-ion value chain – market demand

Automotive LIB manufacturing value chain

Automotive LIB manufacturing value chain

2014 Best-in-Class PHEV LIB Value Chain (\$US/kWh)

* Ex factory gate – shipping from Asia to the west coast of the United States adds approximately \$7/kWh 03/01/2019

Automotive LIB manufacturing value chain

Comments

- The largest share of the value (40%) comes from cell components
- Cell manufacturers & OEM alliance may be the winning model but comes with high risk if the wrong cell manufacturer is selected
- Tiers 1- cell manufacturers alliance: most of them disappear (eg. Saft-Johnson Controls, Bosch-Samsung, Enerdel-Delphi...)
- 4 Tiers 1- OEM alliance on Battery are not successful
- Panasonic and LG Chem, cell manufacturers develop raw -material inhouse and make the pack integration for OEM
- 6 On a different scale, Toyota, BYD or BOLLORE are fully integrate

Actors of LIB value chain in Germany

Sw

03/01/2019

42

Actors of LIB value chain in Finland

CRM value chain analysis

European Battery Alliance

Raw materials	Active N	Naterials	Battery Cells and Battery P		ery Packs		Applic		ations	Recycling/2 nd life		
E-mobility ESS Ind. applications												
EIT Raw Materials	Nanomak	ers	Litarion Gmb	н		Akasol		VOLKSV	VAGEN	ENEL	Umicore	
Leading Edge Materials	Blue Solutions (Bolloré)		Saft			E4V		FIAT		TERNA	Veolia	
Outotec	BASF		Varta		Continental		RENAULT		EDF	Solvay		
EUROMINES	Arkema		Leclanché		LION E-Mobility		Jaguar-Landrover		cyberGRID GmbH	EBRA		
Eramet	NXP Semiconductors		EAS Batteries		BMZ - Batteriemontagezentrum		вмw		Atlas Copco	SUEZ		
Boliden	SGL Carbon SE		Terra E		Sonnen GmbH		PSA Groupe		Manz			
Terrafame	BELENOS		Liacon		EoCell Inc		NISSAN (FR)		Elring-Klinger			
Rio Tinto	CEFIC		Northvolt			HE3DA		VOL	VOLVO Stihl			
Magnis/ Allocate	Heraeus		CustomCells				Husqvarna		Vattenfall			
	Nanomak	ers	KLIB					Daimler		Total		
Research and associations	Fraunhofer	CEA	ENEA	т8	E .	EASE		UROBAT	EMIRI	ANIE	Ångström Advanced	
active in all parts of the value chain	RECHARGE	Akkurate OY	CEPS	SET PLAN	I TWG 7						Battery Centre	

Regional comparison of cell manufacturing costs

- Materials and labor constitute the key cost differences across countries
- Labor costs are driven by location, whereas materials costs are driven by country and company characteristics

03/01/2019

Source: CEMAC

LIB cell manufacturing

Start for maximal period Start for minimal period (best case) Szenario I "Copy-paste" factory 2017 2018 2019 2020 2021 About 20-30 months Prior project and business planning Specifications and call for bids for plant ionsmaterial Allocation of plants and suppliers for production material until acceptance of delivery of plant Planning and approval of plant Construction period Installation of plant, production and validation of sample C Installation sample D / PPAP of suppliers Evaluation sample D Plant Plant construction planning and launch ~16-24 ~ 4-6 months months

LIB cell manufacturing

Scenario 2: Establishment of new player

LIB value creation

- Three major value creation steps:
 - Cell manufacturing
 - Module manufacturing
 - Pack manufacturing and vehicle integration
- Further important steps:
 - Production of processed materials
 - Manufacturing of electrodes
 - Manufacturing of machineries for LIB production plants
- Two additional steps:
 - Second life of LIB as part of the renewable energy system
 - Recycling of raw materials of LIB at their end-of-life

Criteria for selection of LIB cell manufacturing site

- Access to raw materials (graphite, lithium, cobalt, nickel, manganese).
- Proximity to machinery suppliers.
- Existing clusters of battery and materials manufacturers.
- Protection of intellectual property, including
 process innovations.
- Energy cost and environmental legislation.
- Logistical risks and proximity to endmarkets.
- Supply chain optimization e.g. degree of vertical integration.
- Access to talented workforce, especially in RD&D.
- Labor cost of RD&D staff and of skilled factory staff.

- Competitive edge of incumbents that can not be caught up anymore.
- Sunk cost of factories that would produce old technologies if new cell technologies were produced by the new factory.
- Discounts provided to regional customers or members of the regional cluster but not to foreign customers.
- Opportunity to generate lead markets or at least export markets.
- Policy and regulatory context.
- Ease-of-doing-business-considerations.
- Brand and reputation.

Key players

Lithium suppliers

- Mined product
 - Talison 31 % (AU)
 - SQM 22 % (Chile)
 - Albemarle 17 % (USA)
 - FMC 9 % (USA)
 - Orocobre 5 % (AU)
 - Galaxy 3 % (AU)
 - Neometals 1 % (AU)
 - China mineral 5 %
 - China brine 2 %
 - Other mineral 5 %

- Converted minerals
 - Tianqi 43 % (China)
 - Ganfeng 17 % (China)
 - Zhonge 13 % (China)
 - Ruifu 11 % (China)
 - General Li 9 % (China)
 - Sichuan Ni&Co 7 % (China)
 - China 100 %

- Refined products
 - SQM 23 % (Chile)
 - Albemarle 17 % (USA)
 - Tianqi 13 % (China)
 - FMC 10 % (USA)
 - Technical minerals 8 %
 - Orocobre 6 % (AU)
 - Ganfeng Li 5 % (China)
 - Sichuan Ni&Co 5 % (China)
 - Ruifu 4 % (China)
 - Zhonge 4 % (China)
 - General Li 3 % (China)
 - China brine 2 %

Nickel sulphate suppliers

- Sumitomo 18 % (Japan)
- Jilin Jien 13 % (China)
- Jinchuan 11 % (China)
- Norilsk Nickel 8 % (Russia)
- Umicore 6 % (Belgium)
- Others 23 %
- Others China 21 %

Cobalt suppliers

Share of cobalt supply by stage (%)

Source: Roskill

From Congo to China

Congo produces more than half of the global supply of cobalt.

Percentage of raw cobalt production, by country

Much of Congo's cobalt winds up in processed cobalt sulfate.

Percentage of world-wide cobalt sulfate production

For batteries: -China 80 % -Finland (Freeport) 20 %

Cobalt suppliers

- 77 % of refined cobalt produced in China (67 % in 2012)
- CRU: soon 90 %

Cobalt mine in Congo

Cobalt miners in Congo produce 14 % of the output

Cathode materials – LCO suppliers

- L&F 16 % (Korea)
- Umicore 15 % (Belgium)
- Pulead 12 % (China)
- B&M 12 % (China)
- ShanShan 10 % (China)
- Easpring 9 % (China)
- Reshine 9 % (China)
- Nichia 8 % (Japan)
- Xianmen Tungsten 7 % (China)
- Others 2 % (China)
- China 61 %

Cathode materials – NMC suppliers

- Umicore 18 % (Belgium)
- Internal 12 % (LG Chem, Samsung SDI, etc.)
- ShanShan 12 % (China)
- Xianmen Tungsten 10 % (China)
- L&F 9 % (Korea)
- Nichia 9 % (Japan)
- Easpring 8 % (China)
- Jinhe 7 % (China)
- Tianjiao 6 % (China)
- Kelong 2 % (China)
- Dahua 2 % (China)
- Pulead 1 % (China)
- Others 4 % (China)

Cathode materials – NCA suppliers

- Sumitomo 73 % (Japan)
- Toda Kogyo 10 % (Japan)
- Ecopro 5 % (Korea)
- Nihon Kagaku Sangyo 5 % (Japan)
- Kelong 5 % (China)
- Others 2 % (China)
- Japan 88 %

Cathode materials – LFP suppliers

- Internal 27 % (BYD, Hefei, Huanyu, LG, A123, Hi Power)
- Pulead 13 % (China)
- BYD 8 % (China)
- Zhuoneng 6 % (China
- STL 5 % (China)
- Johnson Matthey 4 % (UK)
- Alees 3 % (Taiwan)
- Kelong 2 % (China)
- Tatung 1 % (Taiwan)
- Others 28 % (China)

Anode materials – natural graphite suppliers

- Shenzhen BTR 40 % (China)
- Mitsubishi 15 % (Japan)
- Hitachi 10 % (Japan)
- Shinzoom 9 % (China)
- Posco Chemtech 4 % (Korea)
- Nippon Carbon 4 % (Japan)
- Sinuo 3 % (China)
- Others 10 %

China 70 %

Anode materials – artificial graphite suppliers

- ShanShan 21 % (China)
- Sinuo 20 % (China)
- BTR 16 % (China)
- Zichen 15 % (China)
- Hitachi 7 % (Japan)
- JFE 5 % (Japan)
- Mitsubishi 4 % (Japan)
- Shinzoom 4 % (China)
- Showa Denko 2 % (Japan)
- Others 6 % (China)

LIB separator suppliers

- Asahi 17 % (Japan)
- Toray 15 % (Korea)
- SK Innovation 9 % (Korea)
- Celgard 8% (Asahi subsidiary)
- Sumitomo 6 % (Japan)
- Ube 6 % (Japan)
- W-Scope 6 % (Japan)
- Jinhui 4 % (China)
- Entek 4 % (USA)
- Senior 3 % (China)
- Green 3 %
- Others 19 %

LIB electrolyte suppliers

- Zhangjiagang Guotai-Huarong 15 % (China)
- Capchem 14 % (China)
- Mitsubishi 12 % (Japan)
- In-house 9 %
- Panax-Etec 8 % (Korea)
- ShanShan 8 % (China)
- Jinniu 8 % (China)
- Tinci 6 % (China)
- Soulbrain 5 % (Korea)
- Ube 4 % (Japan)
- Mitsui 3 % (Japan)
- Tomiyama 3 % (Japan)

• Others 5 %

Li-ion cell production

03/01/2019

(2) Avicenne estimation

67

Gigafactory projects in the European Union (as of 20 February 2018)

00/01/2013