HEALTH TUESDAY: CANCER - FROM GROUND-BREAKING RESEARCH TO NOVEL CARE

27.1.2021

Uptake of new research and technologies in cancer care

Ilpo Tolonen, CEO

Docrates Cancer Center Helsinki

Cancer classification and treatment by involved organ

Standard cancer care

Cancer biology driven treatment

Precision oncology

SYÖPÄSAIRAALA

Treatment is expensive and causes side CRATES effects – non-optimal treatments should be avoided.

Cancer treatment strategies

Examples of adapting new research findings and technologies in cancer care

- 1. Diagnostic techniques for higher sensitivity and specificity in cancer staging: help deciding the right overall treatment strategy
- 2. Predictive biomarkers: choosing the right medication for the right patient
- 3. Artificial intelligence and machine learning: reduce errors and facilitate workflow
- 4. Fast-track new cancer drugs: generate trial hypotheses with ex vivo assays and validate them in clinical trials

1: PET-imaging with new tracers reveals cancer with improved accuracy

PET significantly more sensitive than bone scintigraphy

The same patient in both images

Traditional scintigraphy

Source: Even-Sapir et al. JNM 2006; 47:288

2. Liquid biopsy – predictive biomarker based on molecular profiling for disease burden evaluation

ctDNA in blood

- Metabolically active metastases shed ctDNA in blood
- Liquid biopsy can be used to measure total disease burden, detect currently prevalent clones
- od
 - Useful for
 - Diagnostic purposes
 - Rapid response evaluation
 - Minimally invasive, can be repeated often

In= lymph node metastasis

2. Liquid biopsies have been routinely used at Docrates

- Diagnostic use:
 - Identify targetable genetic alterations
- Early response evaluation:
 - Signs of treatment response

cfDNA:n in blood after chemotherapy. Longitudinal measurements in metastatic breast cancer

295 liquid biopsy tests in 2020

Liquid biopsy can indicate treatment response within a week after treatment

3. Utilizing artificial intelligence in radiotherapy planning

Article

A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study

Timo Kiljunen ^{1,*}, Saad Akram ², Jarkko Niemelä ², Eliisa Löyttyniemi ³, Jan Seppälä ⁴, Janne Heikkilä ⁴, Kristiina Vuolukka ⁴, Okko-Sakari Kääriäinen ⁴, Vesa-Pekka Heikkilä ^{5,6}, Kaisa Lehtiö ⁵, Juha Nikkinen ^{5,6}, Eduard Gershkevitsh ⁷, Anni Borkvel ⁷, Merve Adamson ⁷, Daniil Zolotuhhin ⁷, Kati Kolk ⁷, Eric Pei Ping Pang ⁸, Jeffrey Kit Loong Tuan ^{8,9}, Zubin Master ⁸, Melvin Lee Kiang Chua ^{8,9,10}, Timo Joensuu ¹, Juha Kononen ¹, Mikko Myllykangas ¹, Maigo Riener ¹, Miia Mokka ¹¹ and Jani Keyriläinen ^{11,12}

Received: 23 September 2020; Accepted: 13 November 2020; Published: 17 November 2020

4. Ex vivo drug sensitivity and resistance testing for rare and hard-totreat cancer cases

Using tumor derived live cancer cells and organoids as a model for cancer

ANTICANCER RESEARCH 39: 5867-5877 (2019) doi:10.21873/anticanres.13791

Clonal Evolution of MEK/MAPK Pathway Activating Mutations in a Metastatic Colorectal Cancer Case

KAISA I. LEHTOMAKI^{1,2}, LAURA I. LAHTINEN³, NINA RINTANEN³, TEIJO KUOPIO³, IVANA KHOLOVA^{1,4}, RAMI MAKELA5, JUHA K. RANTALA5.6, PIRKKO-LIISA KELLOKUMPU-LEHTINEN1.2 and JUHA KONONEN3.7

Neoplasia Volume 22, Issue 9, September 2020, Pages 390-398

Ex vivo assessment of targeted therapies in a rare

Rami Mäkelä 🖥 🖾, Antti Arionen 🖓 Aldwin Survo Rahmanto b 🖾, Ville Härmä 🔭 🖾, Ianne Lehtiö d 🖾, Teiio Kuopio *

metastatic epithelial-myoepithelial carcinoma

四, Thomas Helleday ^e, Olle Sangfelt ^b回, Juha Kononen ^{e, f}回, Juha K. Rantala ^{e,} e 名 回

Mäkelä et al. BMC Cancer (2020) 20:590 https://doi.org/10.1186/s12885-020-07092-w

BMC Cancer

RESEARCH ARTICLE

Ex vivo modelling of drug efficacy in a rare metastatic urachal carcinoma

Rami Mäkelä¹, Antti Arjonen^{1,2}, Ville Härmä^{1,3}, Nina Rintanen⁴, Lauri Paasonen⁵, Tobias Paprotka⁶, Kerstin Rönsch⁶, Teijo Kuopio⁴, Juha Kononen^{4,7} and Juha K. Rantala^{1,3*}

SYÖPÄSAIRAALA

The therapeutic agent replicates and lyses cancer cells

- Oncolytic viruses replicate selectively in cancer cells resulting in anti-tumor immunity
- TILT technology is based on observations made in treatment of cancer patients with oncolytic viruses
- TILT-123 is an armed oncolytic virus making T cells attack solid tumors
- TILT-123 exhibits 100% cure in preclinical models
- Ongoing international clinical collaborations with pharma/biotech (Merck-KGaA/Pfizer, Biotheus).
- Two Phase-I trials open in Europe with TILT-123, additional studies starting imminently

Additionally, the treatment triggers immune-mediated antitumour effects

