BUSINESS FINLAND

Hydrogen Roadmap for Finland

Juhani Laurikko, Principal Scientist, VIT

VTT

BUSINESS FINLAND

Hydrogen Roadmap for Finland

Juhani Laurikko Principal Scientist, VTT

CONTENTS

- INTRODUCTION AND PRESENTATION OF THE CORE TEAM
- ROADMAP VS. STRATEGY
- SOME BASIC FIGURES AND DIMENSIONS OF HYDROGEN
- WHY HYDROGEN IS IMPORTANT JUST NOW?
- WHAT DEFINES THE MARKET FOR "GOOD" HYDROGEN
- SWOT ANALYSIS FOR FINLAND
- VALUE CHAIN FOR HYDROGEN IN FINLAND
- RECOMMENDATIONS AND TIMELINE FOR EFFORTS
- SUMMARY AND CONCLUSIONS

INTRODUCTION

- BUSINESS FINLAND CONTRACTED VTT TO PREPARE A NATIONAL HYDROGEN ROADMAP FOR FINLAND IN JUNE
- TIME HORIZON FOR THE FRAMEWORK WAS SET TO 2030, AND
- THE MAIN CONTEXT WAS DEFINED TO VIEW FINLAND AS A MEMBER STATE IN THE EUROPEAN UNION
- WORK IS MAINLY **BASED ON INFORMATION FROM PUBLIC SOURCES**, BUT
- THE WORK ENCOMPASSED ALSO INTERVIEWS WITH RELEVANT INDUSTRY REPRESENTATIVES
- TODAY, ONLY PUBLIC INFORMATION AND RESULTS OF TEAM VTT'S OWN JUDGEMENTS ARE PRESENTED

PRESENTATION OF THE CORE TEAM AT

- JUHANI LAURIKKO, DTech, Principal Scientist Project Leader
- JARI IHONEN, DTech, Principal Scientist
- JARI KIVIAHO, PhD, Senior Principal Scientist
- OLLI **HIMANEN**, DTech, Team Leader
- VILLE **SAARINEN**, DTech, Research Scientist
- Additional assistance from: Markus Hurskainen, Robert Weiss and Janne Kärki

ROADMAP VS. STRATEGY

- IN THIS CONTEXT, WE HAVE CHARACTERISED THAT A ROADMAP IS A DESCRIPTION OF THE OPERATING ENVIRONMENT, INCLUDING RULES & REGULATIONS, NECESSARY, AVAILABLE (AND MISSING) ASSETS, GEOGRAPHY ETC, ALL RELATED TO PRODUCTION AND USE OF "GOOD" HYDROGEN PRODUCED IN A SUSTAINABLE WAY
- IT SERVES AS A BASIS FOR SETTING A VISION AND A STRATEGY, AND ASSIST IN NAVIGATING THRU THE LANDSCAPE TO REACH THAT VISION

SOME BASIC FIGURES FOR HYDROGEN - GLOBAL

SOME BASIC FIGURES FOR HYDROGEN - GLOBAL

- SCALING TODAY'S OPPORTUNITIES FOR THE FUTURE OF HYDROGEN IN G20:
- 69 Mt/a of $H_2 = 2300$ TWh (LHV)
- NEEDS ABOUT 4000 TWh NEW CLEAN ELECTRICITY GENERATION, WHICH IS
- MORE THAN TODAY'S TOTAL ELECTRICITY GENERATION IN EU!
- IF IMPELEMENTED, EQUALS CAPTURING OF ABOUT 800 Mt OF CO₂ AND CORRESPONS TO NEARLY 2% OF GLOBAL EMISSIONS

SOME BASIC FIGURES FOR HYDROGEN - EU

Total hydrogen use in the EU, in TWh

339 TWh

1 Counted in transportation segment

SOME BASIC FIGURES FOR HYDROGEN - EU

- 339 TWh AS HYDROGEN (LHV), OF WHICH ABOUT
- 200 TWh IS DEDICATED, PURE H₂ PRODUCTION
- EQUALS 300-350 TWh OF NEW, CLEAN ELECTRICITY GENERATION
- ABOUT 10% of TOTAL PRESENT CONSUMPTION IN EU

IEA PREDICTS A STEEP GROWTH

A record capacity of electrolysers to produce hydrogen was added in 2019, supported by vehicles in Europe and industry in China, with a far bigger wave of projects on its way

IEA PREDICTS A STEEP GROWTH

A record capacity of electrolysers to produce hydrogen was added in 2019, supported by vehicles in Europe and industry in China, with a far bigger wave of projects on its way

Capacity of electrolysers for hydrogen production by commissioning year, by intended use of hydrogen (left) and geography (right)

By intended use	of hydrogen		By geography
THIS C	ALLS FOR STEE	P ADDITIC	ONS
IN INSTALL	ED ELECTROLY	SER CAPA	CITY, BY
SEVER	AL GW's	ANNU/	ALLY
CAN THE PRODU	CTION KEEP	UP WIT	H THIS PACE?
0 0 0 0 0 0	50 A A A	0 0 0 0	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 Vehicles Gas grid blending Hydrogen-based synthetic fuels 	 Industrial applications Electricity storage Other 	■ China ■ Japan	■ North America ■ Europe ■ Rest of World
			IEA 2020. All rights reserved

Source: IEA World Energy Investment (2020)

WHAT ARE THE POSSIBLE PITFALLS?

- THE TARGETED GROWTH NEEDS MORE THAN 100 TIMES ANNUAL INSTALLATIONS OF ELECTROLYSERS COMPARED TO NEW INSTALLATIONS IN 2019
 - CAN THE INDUSTRY SCALE UP SO FAST?
 - ARE THE INVESTORS READY FOR SUCH A "QUANTUM LEAP"?
- THE AUTOMOTIVE INDUSTRY IS CURRENTLY FACING THE SAME CHALLENGE IN ELECTRIC VEHICLE (BATTERY) PRODUCTION, AND NOT WITHOUT DISTRESS

WHAT ARE THE POSSIBLE PITFALLS?

- THE TARGETED GROWTH DEMANDS ALSO STRONG GROWTH IN RENEWABLE ELECTRICITY GENERATION
 - ARE THERE **SUFFICIENT INVESTMENT INTERESTS?**
 - CAN THE CAPACITY BUILD-UP PROCESS COPE WITH THE PACE?
 - PERMITTING AND ACCEPTANCE OF NEW CLEAN ELECTRICITY
 PRODUCTION IS A TEDIOUS AND TIME-CONSUMING PROCESS

BUSINESS FINLAND

WHY HYDROGEN IS IMPORTANT JUST NOW?

- IN RED II, RENEWABLE HYDROGEN IS ACCOUNT H
 AS TRANSPORTATION FUEL AND

 - AS INTERMEDIATE PRODUCT FOR REPLACENTING FOSSIL HYDROGEN IN **CONVENTIONAL TRASNPORT FUELS**
- OTHER (GLOBAL) TARGET PROGRAMMES FOR GHG REDUCTIONS
- REDUCTION OF THE COST OF "GOOD" HYPE USH" E TO PROGRESS IN THE TECHNOLOGY OF ELE

 - INCREASING PRODUCTION OF LOW-COST __INEWABLE ELECTRICITY

WHAT DEFINES THE MARKET FOR "GOOD" HYDROGEN?

COST OF HYDROGEN AT THE SITE OF USE

- INCLUDING PRODUCTION, TRANSPORT, STORAGE etc.
- ON-SITE COST IS DIFFERENT DEPENDING ON LOCATIONS OF PRODUCTION AND USE

ADDED VALUE OF "GOOD" HYDROGEN

- RED II CREATES ADDITIONAL "SURGE" FOR COMPLIANT HYDROGEN, BUT THE VALUE IS DIFFICULT TO ESTIMATE EXACTLY, DUE TO UNCERTAINTY IN
- COSTS OF HVO AND OTHER PRODUCTS TO FULFILL RED II MANDATE
- ALL OTHER, COMPETING USE OF HYDROGEN
 - ALL PRESENT USE OF FOSSIL-BASED HYDROGEN

COST OF "GOOD" HYDROGEN IS A HIGHLY ELUSIVE FIGURE

PRODUCT COST IS DEPENDENT ON A MULTITUDE OF DIFFERENT FACTORS THAT DEPEND ON LOCATION, TIME ETC.

HYDROGEN IN FINLAND

HYDROGEN FINLAND – CURRENT PRODUCTION AND USE

Graphs: Markus Hurskainen, VTT

POTENTIAL NEW USE OF HYDROGEN IN FINLAND

• EXISTING AND ENLARGING PRODUCTION OF RENEWABLE TRANSPORT FUELS

- NESTE/PORVOO: HVO/NEXTBTL*
- UPM KYMMENE/LAPPEENRANTA: HVO/BioVerno*

TERRAFAME MINE

SOTKAMO, PRODUCTION OF H₂S FOR THE ORE REFINING PROCESS*

SSAB STEEL PLANT

RAAHE, PRODUCTION OF CO₂-FREE STEEL (HYBRIT PROCESS)

DIRECT USE IN HEAVY TRANSPORT VEHICLES

 USE OF HYDROGEN FUELL CELLS TO LOWER TRANSPORT COSTS IN SELECTED POINT-TO-POINT LOGISTIC CASES

A TERRITORIAL DIVIDE IN POWER GENERATION

BUSINESS FINLAND Graphs: Markus Hurskainen & Jari Ihonen, VTT

SWOT FOR FINLAND

STRENGTHS	WEAKNESSESS		
Good (onshore & offshore) wind resources	Higher electricity market price vs. Sweden/Norway	-	
Strong transmission grid	Less hydrogen experience outside of industry		
Industrial hydrogen experience	No hydrogen use in traffic	1	4
			14
OPPORTUNITIES	IHREATS		
Production of renewable transportation fuels	Unfavourful changes and/or interpretations of RED II directive	-	
Cost-efficient decarbonisation of existing hydrogen use	Price of technology remains high		T
CO2-free steel production	Low fossil fuel and CO2 allowance prices	7	
Lower logistics cost for industry	Delayed scale-up of electrolyser manufacturing capacity	R P	

SWOT FOR FINLAND – STRENGHTS & ASSETS

- GOOD WIND RESOURCES BOTH ONSHORE & OFFSHORE
- STRONG TRANSMISSION GRID
- STABLE, PREDICTIBLE REGULATION FRAMEWORK
- STRONG EXPERIENCE IN INDUSTRIAL HYDROGEN USE

SWOT FOR FINLAND – WEAKNESSES

- HIGHER ELECTRICITY MARKET PRICE VS. SWEDEN & NORWAY
- LESS HYDROGEN EXPERIENCE OUTSIDE OF INDUSTRY
- NO HYDROGEN USE IN TRAFFIC & TRANSPORTATION
- NO FORMATIONS LIKE SALT CAVERNS (FOR STORAGE)

SWOT FOR FINLAND – THREATS

- CHANGES AND/OR INTERPRETATIONS OF RED II DIRECTIVE THAT COULD PROVE TO BE UNFAVOURABLE FOR FINLAND
- PRICE OF HYDROGEN TECHNOLOGY REMAINS HIGH
- LOW PRICES FOR FOSSIL FUELS AND CO₂ ALLOWANCES
- DELAYED SCALE-UP OF ELECTROLYSER MANUFACTURING CAPACITY

SWOT FOR FINLAND – OPPORTUNITIES

- EXISTING PRODUCTION OF RENEWABLE TRANSPORTATION FUELS
- COST-EFFICIENT DECARBONISATION OF EXISTING HYDROGEN USE
- ENABLER FOR CO₂-FREE STEEL PRODUCTION
- OFFERS LOWERING THE COST OF LOGISTICS FOR INDUSTRY

HYDROGEN VALUE CHAIN ANALYSIS FOR FINLAND

SIMPLE VALUE CHAIN FOR HYDROGEN

Graphs: Ville Saarinen, VTT

VALUE CHAIN FOR HYDROGEN PRODCUTION

VALUE CHAIN FOR HYDROGEN STORGAGE & DISTR.

VALUE CHAIN FOR HYDROGEN UTILISATION

VALUE CHAIN FOR HYDROGEN IN FINLAND

THE VALUE CHAIN IS ALREADY QUITE WELL-POPULATED!

RECOMMENDATIONS AND TIMELINE FOR ACTIONS

RECOMMENDATIONS AND TIMELINE FOR ACTIONS

DOMAINS: PRODUCTION, STORAGE, TRANSPORT & UTILISATION

TIMEFRAMES: PRE 2025 AND POST 2025

2021 2025	2026		2030
-----------	------	--	------

RECOMMENDATIONS AND TIMELINE FOR ACTIONS

PRODUCTION

- SUPPORT INDUSTRIAL ELECTROLYSER PROJECTS IN FINLAND FOR (PARTIAL) REPLACEMENT OF FOSSIL FUEL BASED HYDROGEN PRODUCTION
- IMPROVE INVESTMENT CONDITIONS FOR NEW RENEWABLE ELECTRICITY PRODUCTION
- ACCELERATE DEVELOPMENT OF ELECTRICITY GRID INCLUDING CROSS-BORDER CAPACITY
- BOOST RD&D OF NEXT GENERATION ELECTRO-LYSER TECHNOLOGIES, WHICH COULD HAVE A DOMESTIC VALUE CHAIN
- ASSIST PARTICIPATION IN LARGE INTERNATIONAL HYDROGEN PROJECTS, AND IDENTIFY MOST POTENTIAL HYDROGEN VALLEY LOCATIONS IN FINLAND

- ENCOURAGE INDUSTRIAL ELECTROLYSER PROJECTS IN FINLAND FOR FULL REPLACEMENT OF FOSSIL FUEL BASED HYDROGEN
- PROMOTE INDUSTRIAL ELECTROLYSER PROJECTS FOR LARGE-SCALE NEW USE OF HYDROGEN
- SUPPORT COMMERCIALIZATION OF DOMESTIC SOLID OXIDE ELECTROLYSER TECHNOLOGY (FOR GO-NOGO DECISION)

FINLAND

2021

. . .

RECOMMENDATIONS AND TIMELINE FOR ACTIONS STORAGE

- BOOST R&D FOR STORAGE OPTIONS THAT ARE FEASIBLE IN FINLAND (E.G. PIPELINE STORAGE, LINED ROCK CAVERN)
- SUPPORT FIRST INDUSTRIAL-SCALE HYDROGEN STORAGE DEMONSTRA-TIONS (E.G. PIPELINE STORAGE)

SPONSOR FIRST LARGE-SCALE
 INDUSTRIAL HYDROGEN STORAGE

...

RECOMMENDATIONS AND TIMELINE FOR ACTIONS TRANSPORT OF HYDROGEN

2025

2026

- SUPPORT BUILD-UP OF HYDROGEN ROAD TRANSPORT INFRASTRUCTURE
- ENCOURAGE R&D FOR POSSIBLE REPURPOSING OF EXISTING NATURAL GAS PIPELINES

 BOOST R&D FOR DEDICATED HYDROGEN PIPELINES PROMOTE FIRST HYDROGEN PIPE-LINES, EITHER NEW OF REPURPOSED NG PIPELINES (GO-NO GO DECISION)

2030

RECOMMENDATIONS AND TIMELINE FOR ACTIONS UTILISATION

- SPONSOR RD&D FOR USE OF HYDROGEN IN HEAVY VEHICLE APPLICATIONS TO IDENTIFY BEST USE CASES FOR HYDROGEN IN HEAVY INDUSTRIAL TRANSPORT
- PATRON BUILD-UP OF FIRST HYDROGEN REFUELING STATIONS
- SUPPORT RD&D FOR BLENDING HYDROGEN WITH NG/LNG IN INDUSTRIAL APPLICATIONS
- FOSTER RD&D FOR NEW HYDROGEN USE AND SMALL-SCALE DEMONSTRATION PROJECTS

- SUPPORT FLEET APPLICATIONS OF HYDROGEN HEAVY-DUTY VEHICLES IN INDUSTRY TRANSPORT APPLICATIONS (FOR A GO-NOGO DECISION)
- PROMOTE INVESTMENTS FOR NEW HYDROGEN USE (P2X etc.)

...

SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS (PRELIMINARY)

- FINLAND HAS ALREADY A FAIRLY WELL-POPULATED VALUE CHAIN FOR HYDROGEN PRODUCTION AND USE
- STRONG GRID AND GOOD POTENTIAL FOR NEW RENEWABLE ELECTRICITY GENERATION
- STRONG HIGH-TECH INDUSTRY IN HYDROGEN TECHNOLOGY
- IDENTFIED, POTENTIAL LARGE-SCALE TARGETS FOR NEW HYDROGEN USE
- GOOD POTENTIAL TO ACCELERATE RD&D EFFORTS, BUT ALSO SOME OTHER CASES SUITABLE FOR PUBLIC SUPPORT
- STREMLINING OF RD&D FUNDING PROCESS IS NEEDED
- ENLARGING HYDROGEN-RELATED DOMESTIC MARKET IS NECESSARY

THANK YOU FOR YOUR ATTENTION!

